Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.
One problem that street lamps are popularized in cold regions is that they are easily overlooked because of the accumulation of ice and snow on the surface of the lamps and the formation of ice after melting. Once ice formations are formed, they will pose a great safety hazard to vehicles and pedestrians. Especially for LED street lamps , since the lamp housing is generally made of aluminum, the surface of the alumina is a hydrophilic material, which is more likely to cause ice condensation. In 2008, a large-scale snowstorm in the south of China caused a large number of ice-cold condensation on the surface of aluminum, which collapsed and destroyed a large number of power facilities. The consequences of this disaster are not only caused by the climate, but also the high-pressure cable on the alumina surface is a hydrophilic material. Because it affects the safety of road traffic, preventing ice condensation is a safety measure that LED street lights must consider in cold areas.
In order to solve this key technology, we analyzed the surface of the ice body by microscopic imaging analysis, and analyzed the reason why water freezes on the surface of the object and the ice can adhere firmly on the surface of the object. The experimental results show that the use of materials with excellent hydrophobic properties to prevent ice condensate is not ideal, and even water can be frozen very well on the surface of some materials. The test results show that ice can adhere to the surface of any object; cracks and depressions on the surface of the object are another main reason why ice can adhere firmly to the surface of the object; materials with good hydrophobic properties can delay the freezing. The process does not stop the formation of ice.
In order to more accurately compare the ability of different materials to prevent ice condensation, we have studied the surface structure, surface properties and the intrinsic relationship of ice coating from different angles, including: structural shape and ice coating, structural material and ice coating. , surface finish and ice coating, surface flexibility and ice coating. The results show that the components with simple structure, tight structure, excellent surface waterproofing and hydrophobic properties are not prone to ice condensation.
Based on this test data, we have set up LED street lights with different appearances and shell materials in the winter for several years. Through experiments, we found that all the lamps are smooth, smooth and flat; there is no ice or snow or water storage structure; LED street lights with excellent hydrophobic properties do not produce ice condensation.
Most of the cold regions in China are in high latitudes, with cold climate and large temperature difference, which brings new challenges to the application of LED road lighting products. On the other hand, the average annual lighting time in most cold regions is longer than the domestic average, so the lighting power consumption is also higher than the domestic average. Therefore, the short-night regional characteristics bring more LED lighting application needs. Overall, the application of LED lighting products has both challenges and opportunities.
The above content is provided by WOSEN. WOSEN is a professional manufacturer and supplier of Led Flood Light, Led Street Light, Led Solar Light, etc. For more information, please visit https://www.wosenled.com/ or contact admin@wosenled.com or WhatsApp +86-13425434349
Wyślij je do tym dostawcy
Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.
Fill in more information so that we can get in touch with you faster
Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.